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Abstract—The tone reservation method can be used to re-
duce the peak to average power ratio (PAPR) in orthogonal
frequency division multiplexing (OFDM) transmission systems.
In this paper the tone reservation method is analyzed for OFDM
with a restricted carrier set, where only the positive carrier
frequencies are used. Performing a fully analytical analysis, we
give a complete characterization of the information sets for which
the PAPR problem is solvable. To derive our main result, we
connect the PAPR problem with a geometric functional analytic
property of certain spaces. Further, we present applications of
our theory that give guidelines for choosing the information
carriers in the finite setting and discuss a probabilistic approach
for selecting the carriers. Additionally, it is shown that if there
exists an information sequence for which the PAPR problem is
not solvable, then the set of information sequences for which the
PAPR problem is not solvable is a residual set.

Index Terms—Peak to average power, crest factor, tone reser-
vation, orthogonal frequency division multiplexing, solvability

I. INTRODUCTION

ORTHOGONAL transmission schemes, like orthogonal
frequency division multiplexing (OFDM), are popular in

modern communication systems. Mathematically, the transmit
signal s of an orthogonal transmission scheme has the form

s(t) =
∑
k∈I

ckφk(t), t ∈ [t1, t2],

where I ⊂ Z is an index set, t2 − t1 is the signal dura-
tion, {φk}k∈I is an orthonormal system (ONS) of functions
on [t1, t2], and {ck}k∈I ⊂ C are the information bearing
coefficients. Each φk is called carrier. In modern standards,
such as 5G, also arbitrary waveforms {φk}k∈I , which are not
necessarily orthogonal, are discussed [2].

Although orthogonal transmission schemes have many fa-
vorable properties [3], they suffer from large peak to average
power ratios (PAPRs) of the transmit signals [4], [5]. For
any orthonormal system {φk}k∈I with bounded functions φk,
k ∈ I, the worst-case PAPR increases like

√
N , where N

This work was supported by the Gottfried Wilhelm Leibniz Programme
of the German Research Foundation (DFG) under grant BO 1734/20-1, the
DFG under Germany’s Excellence Strategy – EXC-2111 – 390814868, and
the German Federal Ministry of Education and Research (BMBF) within the
national initiative for “Post Shannon Communication (NewCom)” under Grant
16KIS1003K.

The material in this paper was presented in part at the 2018 International
Symposium on Information Theory [1].

Holger Boche is with the Technische Universität München, Lehrstuhl für
Theoretische Informationstechnik, 80290 Munich, Germany, and the Munich
Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799
Munich, Germany. e-mail: boche@tum.de. Ullrich J. Mönich is with the Tech-
nische Universität München, Lehrstuhl für Theoretische Informationstechnik,
80290 Munich, Germany. e-mail: moenich@tum.de.

denotes the number of carriers. Large PAPRs are problem-
atic, because they can overload power amplifiers, leading to
distorted signals and out-of-band radiation [6].

Numerous methods have been proposed for reducing the
PAPR [7]–[23]. In addition to selected mapping [13], [15],
[17], [18], [24], the method of tone reservation, which we
consider in this paper, is often employed [7], [8], [11], [20],
[25], [26]. In the tone reservation method, the set of available
carriers {φk}k∈I is partitioned into two sets, the first of which
is used to carry the information, and the second of which to
reduce the PAPR.

The tone reservation method has been extensively studied
for OFDM systems [11], [12], [16]. Although tone reservation
is an elegant method that is easy to describe, its theoretical
analysis is difficult. Almost all studies so far are based on
numerical approaches, and there exist virtually no analytical
results for the solvability of the PAPR problem. It is clear
that brute force numerical approaches are problematic due to
the combinatorial nature of the problem, which often makes
it infeasible to find optimal solutions.

An analytical study of the PAPR reduction in OFDM with
tone reservation was performed in [27], where Kashin’s repre-
sentation was used to construct a transmit signal, the PAPR of
which is bounded from above by a certain expression. Further,
a PAPR reduction algorithm was presented. A different line of
research has been conducted in [9], [28], [29]. There the PAPR
of OFDM for certain codes was studied in connection with the
capacity of the channel. In [9] a lower bound on the PAPR for
constant energy codes was derived, and in [28] more general
codes were considered.

In practical applications the following three questions for
tone reservation for orthonormal transmission schemes are rel-
evant: What is the best possible reduction of the PAPR? What
is the optimal information set that achieves this reduction, and
how can it be found? What is the general structure of the
information set? The answers to these questions are difficult
to obtain and open, except for special cases. For CDMA
communication systems that employ the Walsh system, the
question about the best possible reduction constant could be
answered in [30], and an optimal information set that achieves
this reduction was given. For OFDM the answers to these
questions are, to the best of our knowledge, unknown.

A starting point for the analysis of the PAPR problem for
general complete orthonormal systems (CONS) was made in
[31]. There it has been analyzed when, for a given CONS,
the PAPR reduction problem is solvable, and two solution
concepts—weak and strong solvability—were introduced. We
will discuss both concepts later in more detail. For the results
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in [31] it has been important that the employed ONS was
complete. This property was central at several points in the
proof. It seems that this assumption cannot be weakened
without loosing the generality of the result. If the completeness
is not given, specific properties of the ONS at hand have to
be utilized to obtain comparable results.

In this paper we will study the PAPR problem for an
orthonormal system that is not complete. This requires a
completely different and new approach compared to [31]. In
particular the result for the restricted carrier set cannot be
obtained by a projection of the unrestricted carrier set.

Before trying to answer the above three difficult questions,
it seems reasonable to address a more fundamental question
first: When is the PAPR reduction problem solvable? In [25]
and [32] an analytical approach was taken to answer this
question. An essential assumption in the analysis was that the
set of carrier functions {φk}k∈I forms a complete orthonormal
system. However, for practical applications, this assumption
may be too restrictive. For example in OFDM, usually only a
subset of all carrier frequencies is used. In this case the system
of carrier functions is no longer complete and the theory and
proof ideas from [32] are no longer applicable.

Given an orthonormal system {φk}k∈I , the information
set and the compensation set both have to be subsets of the
index set I. In OFDM the employed system of orthonormal
functions is {eikt}k∈I , and only a fraction of all available
carriers is used, i.e., we have I ⊂ Z. In the present work we
analytically analyze the PAPR problem for OFDM with an
index set I = N0, and completely characterize the information
sets for which the PAPR is solvable. To the best of our
knowledge, there exist no analytical results for these problems
so far. Note that our analytical results are formulated in an
infinite setting, where we allow infinitely many compensation
carriers. Clearly, in practice only finitely many carriers can be
used, which reduces the performance.

We further present applications of our theory that give
guidelines for choosing the information carriers. By using the
theory of arithmetic progressions, we can derive results for
the practical relevant case of finitely many carriers, and for a
probabilistic choice of the information carriers. We will see
that the density of the information carriers is an important
quantity in these considerations.

II. NOTATION

By Z we denote the integers, by N the naturals, and by
N0 = {0} ∪ N the non-negative integers including zero. For
a set K ⊂ Z we use the notation −K = {−k : k ∈ K}.
Further, by Lp[−π, π], 1 ≤ p ≤ ∞, we denote the usual
Lp-spaces on the interval [−π, π], equipped with the norm
‖f‖Lp = (1/(2π)

∫ π
−π|f(t)|p dt)1/p for 1 ≤ p <∞ and with

‖f‖L∞ = ess supt∈[−π,π]|f(t)| for p = ∞. ess sup denotes
the essential supremum. Note that for notational convenience
we use a normalization factor in the norm. We can identify
functions defined on [−π, π] with functions defined on the
torus T. µ denotes the Lebesgue measure. For an index set
I ⊂ Z, we denote by `2(I) the set of all square summable
sequences c = {ck}k∈I indexed by I. The norm is given by
‖c‖`2(I) = (

∑
k∈I |ck|2)1/2.

III. PAPR, TONE RESERVATION AND SOLVABILITY
CONCEPTS

A. Basic Concepts

Without loss of generality, we restrict ourselves to signals
defined on the interval [−π, π], i.e., signals with a duration
of 2π. Signals with other duration can be simply scaled to
be concentrated on [−π, π]. For a signal s ∈ L2[−π, π], we
define the crest factor by

CF(s) =
‖s‖L∞
‖s‖L2

, (1)

i.e., the CF is the ratio between the peak value of the signal
and the square root of the power of the signal. Note that the
PAPR is defined as the square of this value. Hence, minimizing
the PAPR of a signal is equivalent to minimizing the CF. In
the following we will call the PAPR problem CF problem for
consistency.

In the case of an orthogonal transmission scheme, using an
ONS {φk}k∈I ⊂ L2[−π, π], the CF of the transmit signal

s(t) =
∑
k∈I

ckφk(t), t ∈ [−π, π],

with coefficients c = {ck}k∈I , is given by

CF(s) =
‖
∑
k∈I ckφk‖L∞
‖c‖`2(I)

,

because {φk}k∈I is a ONS, and thus ‖s‖L2 = ‖c‖`2(I).
Remark 1. For an orthogonal transmission scheme, the peak
value of the signal s, and hence the CF, can become large,
as the following result shows. Given any system {φk}Nk=1

of N orthonormal functions in L2[−π, π], then there exist a
sequence {ck}Nk=1 ⊂ C of coefficients with

∑N
k=1|ck|2 = 1,

such that ‖
∑N
k=1 ckφk‖L∞ ≥

√
N [33]. This increase of the

CF with an order of
√
N is undesired and ways to battle it

are needed.

Tone reservation is one approach to reduce the CF. Let
{φk}k∈I be an ONS in L2[−π, π]. We additionally assume
that ‖φk‖L∞ < ∞, k ∈ I, i.e., we consider the practically
relevant case of bounded carriers. In the tone reservation
method, the index set I is partitioned in two disjoint sets,
the information set K and the compensation set K{

I = I \ K.
Although slightly imprecise, we will call the carrier index set
I simply carrier set in the following. Note that the set K can be
finite or infinite. For a given sequence a = {ak}k∈K ∈ `2(K),
the goal is to find a sequence b = {bk}k∈K{

I
∈ `2(K{

I) such
that the peak value of the signal

s(t) =
∑
k∈K

akφk(t)

︸ ︷︷ ︸
=:A(t)

+
∑
k∈K{

I

bkφk(t)

︸ ︷︷ ︸
=:B(t)

, t ∈ [−π, π],

is as small as possible. A(t) denotes the signal part which
contains the information and B(t) the part which is used to
reduce the CF.
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B. Basic Definitions

Note that we allow infinitely many carriers to be used in
our theory. In particular, we allow infinitely many carriers to
be used for the compensation of the CF. Clearly, this setting
is not practical, however, from our results we can derive
recommendations for the choice of the information set in the
finite setting. This will be discussed in Section VI. Further,
the solvability of the CF problem in the infinite setting is a
necessary condition for the solvability of the CF problem in
the finite setting. Hence, if the CF problem is not solvable for a
certain information set K in the infinite setting it is even more
so not solvable with a finite compensation set. This helps us to
rule out certain bad information sets, and thus we can reduce
the number of information sets which have to be considered
in the search for good information sets.

We define the strong solvability of the CF problem next.

Definition 1 (Strong Solvability of the CF problem). For an
ONS {φk}k∈I in L2[−π, π] and a set K ⊂ I, we say that the
CF problem is strongly solvable with finite extension constant
CIEx, if for all a ∈ `2(K) there exists a b ∈ `2(K{

I) such that∥∥∥∥∥∥
∑
k∈K

akφk +
∑
k∈K{

I

bkφk

∥∥∥∥∥∥
L∞

≤ CIEx‖a‖`2(K). (2)

We call the CF problem strongly solvable if it is strongly
solvable for some finite extension constant CIEx. The smallest
of all extension constants CIEx, such that (2) is satisfied, is
denoted by CIEx.

If the CF reduction problem is strongly solvable, condition
(2) immediately implies that ‖b‖`2(K{

I)
≤ CIEx‖a‖`2(K), be-

cause(∑
k∈K{

I

|bk|2
) 1

2

≤

(∑
k∈K

|ak|2 +
∑
k∈K{

I

|bk|2
) 1

2

=

(
1

2π

∫ π

−π

∣∣∣∣∣∑
k∈K

akφk(t) +
∑
k∈K{

I

bkφk(t)

∣∣∣∣∣
2

dt

) 1
2

≤ ess sup
t∈[−π,π]

∣∣∣∣∣∑
k∈K

akφk(t) +
∑
k∈K{

I

bkφk(t)

∣∣∣∣∣. (3)

That is, the energy of the compensation signal is bounded by
(CIEx‖a‖`2(K))2. Further, we have CF(s) ≤ CIEx.

An ONS {φk}k∈I is said to be complete if
span({φk}k∈I) = L2[−π, π], i.e., if the closed linear
span of {φk}k∈I equals L2[−π, π], or in other words if the
linear span of {φk}k∈I is dense in L2[−π, π]. In [20], [26]
the following characterization of strong solvability of the
CF problem was given for ONSs that are complete. In this
characterization the set

P1(K) =

{
f ∈ L1[−π, π] :

f =
∑
k∈K

akφk for some {ak}k∈K ⊂ C

}
(4)

plays a central role. P1(K) is a closed subset of L1[−π, π].

Theorem 1. Let {φk}k∈I be a complete ONS in L2[−π, π],
K ⊂ I, and CIEx > 0. The CF problem is strongly solvable for
{φk}k∈I and K with constant CIEx if and only if

‖f‖L2 ≤ CIEx‖f‖L1 (5)

for all f ∈ P1(K).

Theorem 1 connects the CF problem with a geometric
functional analytical property of the set P1(K). Comparing
(5) with (2), we see that the optimal extension constant CIEx
is even the same. In Section VI, we will use the geometric
condition (5) to derive a necessary condition for the solvability
of the OFDM CF problem and to establish connections to
combinatorics. Theorem 1 is particularly interesting, because
the characterization only depends on the information set K
and the signals created by this set. That is, the compensation
signals are irrelevant.
Remark 2. Due to the Cauchy–Schwarz inequality we have
‖f‖L1 ≤ ‖f‖L2 . Hence, if the CF problem is strongly
solvable, we have

1

CIEx
‖f‖L2 ≤ ‖f‖L1 ≤ ‖f‖L2

for all f ∈ P1(K). This shows that on P1(K), the L1-norm
and the L2-norm are equivalent.

A weaker form of solvability is weak solvability.

Definition 2 (Weak solvability of the CF problem). For an
ONS {φk}k∈I in L2[−π, π] and a set K ⊂ I, we say that
the CF problem is weakly solvable, if for all a ∈ `2(K) there
exists a b ∈ `2(K{

I) such that∥∥∥∥∥∥
∑
k∈K

akφk +
∑
k∈K{

I

bkφk

∥∥∥∥∥∥
L∞

<∞. (6)

This is a weaker form of solvability compared to strong
solvability, because the peak value of the transmit signal is
only required to be bounded and not to be controlled by the
norm of the sequence a = {ak}k∈K as in (2).

C. Discussion

Finding optimal information sets K and determining the
minimal extension constant is very challenging. For general
ONSs {φk}k∈I the answers to both questions are unknown.

For the special case where the ONS is given by the set
of Walsh functions, answers could be obtained [34]. Walsh
functions are used for example in code division multiple access
(CDMA) transmission schemes. In [34] it was shown that if
more than N ≥ 2 carriers are used, then the optimal extension
constant CEx is independent of N and given by CEx(N) =

√
2.

Further, it was proved that this minimal extension constant can
be achieved by using the first N Rademacher functions, i.e.,
the information set K = {2k + 1}N−1k=0 .

The proof techniques that were used in [34] were specifi-
cally tailored to the Walsh function and therefore do not work
for the system of exponentials that is used in OFDM, or for
other ONS.
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IV. SOLVABILITY FOR OFDM WITH RESTRICTED
CARRIER SET

In Theorem 1 we have seen a functional analytic description
of the solvability of the CF problem for the case where the
ONS {φk}k∈I is complete. The goal of this section is to study
the CF problem for OFDM with a restricted carrier set, which
corresponds to a ONS that is not complete.

We are only interested in OFDM, i.e., the employed set of
orthonormal functions will be the set of complex exponentials
{eikt}k∈I in the following. As carrier set we consider I = N0,
i.e., the case where only the positive frequencies are used.
If I = Z then {eikt}k∈Z is a complete ONS in L2[−π, π].
For this case there exists a fully developed theory [25], [32],
and Theorem 1 gives a complete characterization of strong
solvability. However, if I = N0, the set of exponentials
{eikt}k∈N0

is no longer complete. This make a huge difference
from a mathematical point of view. As a consequence, the
theory and proof techniques from [25], [32] can no longer be
used, and new approaches are needed.

In the rest of this paper we will study the CF problem
for OFDM and analyze the effects of restricting the carriers
to the positive frequencies, i.e., choosing I = N0. In order
to compare the two scenarios, I = Z (full carrier set) and
I = N0 (restricted carrier set), we will always assume that
the information set K is a subset of N0. As compensation sets
we consider the full set K{

Z = Z\K if I = Z, and the restricted
set K{

N0
= N0 \ K if I = N0.

Definition 3 (Strong Solvability of the OFDM CF problem
with restricted carrier set). For a set K ⊂ N0, we say that
the OFDM CF problem with restricted carrier set is strongly
solvable with finite extension constant CN0

Ex , if for all a ∈
`2(K) there exists a b ∈ `2(K{

N0
), such that∥∥∥∥∥∥∥

∑
k∈K

ak eik · +
∑
k∈K{

N0

bk eik ·

∥∥∥∥∥∥∥
L∞

≤ CN0

Ex ‖a‖`2(K). (7)

We call the OFDM CF problem with restricted carrier set
strongly solvable if it is strongly solvable for some finite
extension constant CN0

Ex .

Remark 3. Clearly, for a given information set K ⊂ N0, a
necessary condition for the strong solvability of the OFDM
CF problem with restricted carrier set, is the strong solvability
of the OFDM CF problem with full carrier set, because K{

N0
=

N0 \ K ⊂ Z \ K = K{
Z.

We are interested in a characterization similar to Theorem 1
for the strong solvability of the CF problem with restricted
carrier set. The subspace

F1(K) =

{
f ∈ L1[−π, π] :

f =
∑
k∈K

ak eik · for some {ak}k∈K ⊂ C

}
,

which is defined similar to (4), will play an important role
in the analysis. Our main result is the following theorem, a

characterization of the strong solvability of the CF problem
with restricted carrier set.

Theorem 2. Let K ⊂ N0. The OFDM CF problem with
restricted carrier set (I = N0) is strongly solvable if and
only if there exists a constant C1 such that

‖f‖L2 ≤ C1‖f‖L1 (8)

for all f ∈ F1(K).

The proof of Theorem 2 will be given in Appendix D.
Using the result from [20], [26], i.e., Theorem 1, we

immediately obtain the following corollary.

Corollary 1. Let K ⊂ N0. The OFDM CF problem with
restricted carrier set (I = N0) is strongly solvable if and
only if it is strongly solvable with full carrier set (I = Z).

Corollary 1 shows that with respect to strong solvability,
the usage of the full compensation set K{

Z does not give any
advantage over the usage of the restricted compensation set
K{

N0
. This is surprising, because intuitively one would assume

that using the full compensation set gives a higher degree
of flexibility in the design of the compensation signal and
hence a better compensation. Nevertheless, we conjecture that
in general better constants can be achieved when using the full
compensation set K{

Z.

Proof of Corollary 1. “⇒”: This direction is obvious. “⇐”: If
the OFDM CF problem is strongly solvable with full carrier set
then we have (5) for all f ∈ F1(K), according to Theorem 1.
Application of Theorem 2 completes the proof.

V. DISCUSSION: SOLVABILITY WITH RESTRICTED
COMPENSATION SET

In this section we discuss why we cannot infer the solv-
ability of the CF problem with restricted carrier set from the
solvability of the CF problem with full carrier set.

Let G be an arbitrary subset of Z, and define

(PGf)(θ) =
∑
k∈G

ck(f) eikθ, θ ∈ [−π, π], (9)

where
ck(f) =

1

2π

∫ π

−π
f(θ) e−ikθ dθ.

First we consider PG as an operator mapping from L2[−π, π]
into L2[−π, π]. Using Parseval’s equality, we see that

‖PGf‖2L2 =
∑
k∈G

|ck(f)|2 ≤
∑
k∈Z
|ck(f)|2 = ‖f‖2L2 .

Clearly, PG : L2[−π, π]→ L2[−π, π] is a projection operator,
i.e., a linear and bounded operator that satisfies PG(PGf) =
PGf for all f ∈ L2[−π, π]. The series in (9) converges
in the L2 norm. However, for us, instead of L2[−π, π], the
relevant space is L∞[−π, π], and PG does not necessarily map
L∞[−π, π] into L∞[−π, π]. Hence, if we solve the CF prob-
lem with full carrier set, we cannot simply project the solution
onto the positive frequencies, because for f ∈ L∞[−π, π],
PN0

f is not necessarily in L∞[−π, π].
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Fig. 1. Plot of the signal f (N)
1 (θ) =

∑N
k=1 sin(kθ)/(k log(1+ k)) (upper

panel) and the absolute value of its projection |(PN0
f
(N)
1 )(θ)| (lower panel)

for N = 4, 10, 1000.

We illustrate this behavior with two examples. Let

f1(θ) =
∞∑
k=1

1

k log(1 + k)
sin(kθ), θ ∈ [−π, π],

and

f2(θ) =

∞∑
k=1

1

k
sin(kθ), θ ∈ [−π, π].

Note that f1 is absolutely continuous and f2 is bounded by a
constant. Then we have

(PN0
f1)(θ) =

∞∑
k=1

1

2ik log(1 + k)
eikθ, θ ∈ [−π, π],

and

(PN0
f2)(θ) =

∞∑
k=1

1

2ik
eikθ, θ ∈ [−π, π].

Both series converge in L2[−π, π], however, we have PN0
f1 6∈

L∞[−π, π] and PN0
f2 6∈ L∞[−π, π], because both functions

are unbounded in the vicinity of zero. This behavior is
illustrated in Figures 1 and 2, where partial sums of the series
and absolute values of their projections are plotted.

VI. APPLICATIONS AND EXAMPLES

For practical applications it is important to have guidelines
how to choose the information set K. In this section we present
several examples for the choice of the information set and
discuss the solvability of the OFDM CF problem for these
choices.
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Fig. 2. Plot of the signal f (N)
2 (θ) =

∑N
k=1 sin(kθ)/k (upper panel) and

the absolute value of its projection |(PN0
f
(N)
2 )(θ)| (lower panel) for N =

4, 10, 1000.

A. Two Negative Examples

First, we present two examples that demonstrate how not
to choose the set K. While this gives no immediate indication
of a good set K, it at least significantly reduces the set of
information sets that have to be considered in the search for
good information sets.

Our approach enables us to connect the OFDM CF problem
with the theory of arithmetic progressions. This theory is
a very active area of mathematics with several deep results
[35]–[38]. For example, Szemerédi’s theorem on arithmetic
progressions is one of the key results in combinatorics [39].
We can use the results on arithmetic progressions in order to
obtain further insights into the OFDM CF problem.

Definition 4. An arithmetic progression of length L ∈ N is a
subset of Z, having the form

{a, a+ d, a+ 2d, . . . , a+ (L− 1)d}

for some a ∈ Z and d ∈ N.

The length of the largest arithmetic progression in the
information set K influences the size of the optimal extension
constant. For the OFDM CF reduction problem with full
compensation set (I = Z), a lower bound for the smallest
extension constant is given by

CZ
Ex >

√
L

4
π log

(
L
2

)
+ 4 + 2

24−π2 + 4
π2

, (10)
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when K contains an arithmetic progression of length L [40].
Note that according to the definition of the smallest extension
constant CZ

Ex, this implies that there exists an information
sequence a ∈ `2(K) with ‖a‖`2(K) = 1 such that∥∥∥∥∥∥
∑
k∈K

akφk +
∑
k∈K{

Z

bkφk

∥∥∥∥∥∥
L∞

≥
√
L

4
π log

(
L
2

)
+ 4 + 2

24−π2 + 4
π2

for all compensation sequences b ∈ `2(K{
Z). This shows

that long arithmetic progressions should be avoided in the
information set K, because they can lead to large peak values.
The previous discussion was for the full carrier set (I = Z),
but clearly the situation cannot improve if the restricted carrier
set (I = N) is considered.

We have the following interesting result by Terence Tao
about the existence of arithmetic progressions [36, Theo-
rem 1.2, p. 2].

Theorem 3 (Quantitative form of Szemerédi’s theorem). Let
0 < δ < 1 and L ∈ N. There exists a natural number
N0 = N0(δ, L) such that for all N ≥ N0 we have: If
K ⊂ {0, . . . , N} satisfies |K| ≥ δN then K contains an
arithmetic progression of length L.

This theorem shows that if we choose the set K ⊂
{0, . . . , N} not too thin and if N is large enough than K
contains an arithmetic progression of length L. For practical
applications, it is desirable to chose δ large.

Now we will use the lower bound on the optimal extension
constant (10) together with Theorem 3 to obtain a necessary
condition for the strong solvability [25], [26].

Theorem 4. Let K ⊂ N0. If the OFDM CF problem is strongly
solvable then we have

lim
N→∞

|K ∩ {0, . . . , N}|
N + 1

= 0. (11)

Hence, the density of the information set K has to go to
zero in order that the OFDM CF problem is solvable. In other
words, if (11) is not satisfied, i.e., if we have

lim sup
N→∞

|K ∩ {0, . . . , N}|
N + 1

> 0,

then K contains arbitrarily long arithmetic progressions and
the condition for strong solvability cannot be fulfilled [25].
From this observation, we immediately obtain the following
example.

Example 1. Let K be the set of all even natural numbers.
Then the OFDM CF problem is not strongly solvable.

Note that condition (11) is not sufficient for solvability.
There exist sets K that satisfy (11), but for which the OFDM
CF problem is not strongly solvable. For example, if K is the
set of primes P , then we have

lim sup
N→∞

|P ∩ {0, . . . , N}|
N + 1

= 0.

However, a result by Green and Tao [41] shows that the set
of primes P contains arbitrarily long arithmetic progressions.
Hence, by the same arguments that were used to derive

Theorem 4, it follows that the OFDM CF problem is not
solvable.

Example 2. Let K be the set of all primes. Then the OFDM
CF problem is not strongly solvable.

B. A Probabilistic Approach

Another approach to select the information set, is random
selection. In this approach, we first choose the expected den-
sity η that our information set K should have. In other words
η is the expectation of the fraction of information carriers
to the total number of carriers. Then the information carriers
are selected randomly according to the following procedure.
Assume that we have N + 1 carriers {0, . . . , N} available in
total. With a probability p = η, we use any of those carriers
as an information carrier, i.e., include it in the set K. Then,
we have η = E(|K|/(N + 1)). The compensation set is given
by K{

{0,...,N} = {0, . . . , N} \ K. It is clear that the selection
probability should be chosen depending on N in order to get
the strongest possible result.

Using this randomized procedure, one could hope that in
average the performance is good. However, this is not the case
because of the following theorem, which was derived in [42]
for the full carrier set (I = Z), based on a result by Conlon
and Gowers [43] and Schacht [44].

Theorem 5. Let L ∈ N. There exists a constant C such that
for every sequence {pN}N∈N with pN ≥ C/N

1
L−1 , N ∈ N,

we have
lim
N→∞

P(AN,L,pN ) = 1,

where AN,L,pN denotes the event: “The OFDM CF problem
is not solvable with an extension constant

C
{0,...,N}
Ex ≤

√
L

4
π log

(
L
2

)
+ 4 + 2

24−π2 + 4
π2

(12)

for the information set K ⊂ {0, . . . , N}, chosen as described
above using the probability pN .

The theorem shows that a probabilistic choice of the in-
formation set leads, with a probability close to one, to a
performance that is as bad as the performance in the case
where the information set contains an arithmetic progression.

Remark 4. Theorem 5 is a direct consequence of [42], because
for the restricted carrier set (I = N0) the smallest extension
constant is always larger than or equal to the smallest extension
constant for the full carrier set (I = Z).

Remark 5. We directly use the theorems by Conlon and Gow-
ers [43] and Schacht [44], respectively. Let BN,L,pN denote
the event that “the set K contains an arithmetic progression of
length L”. Then if pN ≥ C/N

1
L−1 we have

lim
N→∞

P(BN,L,pN ) = 1.

Hence, the extension constant C{0,...,N}Ex must be larger that
the right-hand side of (12). If pN ≥ C/N

1
L−1 then we have

E(|K|) ≥ CN1− 1
L−1 = CN

L−2
L−1 .
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That is, compared to Szemerédi’s theorem, we have a state-
ment for a density δN,L = C/N

1
L−1 . However, the statement

is weaker: For fixed L the statement is only for almost all
subsets K ⊂ {0, . . . , N}, where the probability measure has
to satisfy pN ≥ C/N

1
L−1 .

Remark 6. In information theory one often faces the situation
that optimal codes with a closed form description can only
be derived for relatively few operational tasks. However, if
the “correct” counting measure is introduced on the com-
binatoric objects, then almost all combinatoric objects have
the desired property, i.e., are capacity achieving codes for
example. Similar statements are true for example for spreading
codes for CDMA systems with good correlation properties.
For random sets K ⊂ {0, . . . , N}, this is no longer true if the
sets are chosen independent and identically distributed with
p ≥ C/N

1
L−1 . Practically, this is no restriction if E(|K|) shall

not be too small. E(|K|) should be comparable to N , but in this
case random constructions are useless for the CF reduction.

C. A Positive Example

The condition (8) in Theorem 2 completely specifies the
information sets K for which the OFDM CF problem is
strongly solvable. In the following, we present an information
set for which the OFDM CF problem is strongly solvable.

Example 3. Let K = {2k}k∈N0
. Then the OFDM CF problem

is strongly solvable.

Since {2k}k∈N0
is a lacunary sequence, there exists a

constant C1 such that we have (8) for all f ∈ F1(K). For
details, please see [45, p. 240].

Although the OFDM CF problem is strongly solvable for
K = {2k}k∈N0

, it is not advisable to use this information set
in practice. The density of this set gets smaller and smaller
very quickly, because the distance of subsequent carriers grows
exponentially.

VII. THEORY FOR WEAK SOLVABILITY

In this section we analyze the weak solvability of the OFDM
CF problem.

Definition 5 (Weak solvability of the OFDM CF problem with
restricted carrier set). For a set K ⊂ N0, we say that the CF
problem with restricted carrier set is weakly solvable if for all
a ∈ `2(K) there exists a b ∈ `2(K{

N0
) such that∥∥∥∥∥∥∥

∑
k∈K

ak eik · +
∑
k∈K{

N0

bk eik ·

∥∥∥∥∥∥∥
L∞

<∞.

Weak solvability is indeed a weaker form of solvability,
because strong solvability always implies weak solvability. In
[32] weak solvability of the CF problem was analyzed for
OFDM, i.e., the system of exponential functions {eikt}k∈Z,
and the full carrier set (I = Z). As a surprising result it
turned out that in this setting weak solvability implies strong
solvability, i.e., that both solvability concepts are equivalent.
In [46] this result was generalized to arbitrary compete or-
thonormal systems. Since in our setting with restricted carrier

set (I = N0), the system of exponential functions is no longer
complete, we cannot directly use the results from [32], [46].

Using a modified version of the proof in [46], we can derive
the interesting result that weak solvability implies strong solv-
ability also for the OFDM CF problem with restricted carrier
set. Hence, also in our setting both concept are equivalent.

Theorem 6. Let K ⊂ N0. If the OFDM CF problem with
restricted carrier set (I = N0) is weakly solvable then it is
also strongly solvable.

The proof of Theorem 6 is given in Appendix E.

Remark 7. We conjecture that the result of Theorem 6, i.e.,
the equivalence of strong and weak solvability, does not hold
for arbitrary carrier sets I ⊂ Z. In our proof, which employs
the theory of Hardy spaces, it is essential to have the set of
exponentials and I = N0.

In the remainder of this section we analyze the size of the
set of information sequences, for which the CF problem with
restricted carrier set is not solvable. For a given set K ⊂ I,
let

BI(a)=

{
b ∈ `2(K{

I) :

∥∥∥∥∥∑
k∈K

ak eik · +
∑
k∈K{

I

bk eik ·

∥∥∥∥∥
L∞

<∞

}
.

We have BI(a) = ∅ if and only if the CF problem with
compensation set K{

I is not weakly solvable. By

DI = {a ∈ `2(K) : BI(a) = ∅}

we denote the set of information sequences, for which the CF
problem with compensation set K{

I is not solvable.
In [32] the set DZ was analyzed. It was shown for the full

carrier set (I = Z) that if the OFDM CF problem is not
weakly solvable, then the set DZ is a residual set, i.e., is big
in a topological sense.

The next theorem shows that the same results holds for the
OFDM CF problem with restricted carrier set.

Theorem 7. Let K ⊂ N0. If the OFDM CF problem with
restricted carrier set (I = N0) is not weakly solvable then
DN0

is a residual set in `2(K).

The proof of Theorem 7 is given in Appendix F.

VIII. CONCLUSION

While almost all existing publications treat tone reservation
for OFDM in a numerical manner, we provided an analytical
approach in this paper. For the ODFM CF problem with
restricted carrier set we studied and answered the fundamental
question “When is the CF problem solvable?”. This is a first
step towards solving the three general questions presented in
the introduction.

For our analysis we specifically used the properties of the
exponential functions that are used in OFDM and the choice
I = N0 of the carrier set. We derived a geometric functional
analytic description for the OFDM CF problem with restricted
carrier set. We also provided several examples that show how
our theory can be applied to derive guidelines for the choice
of optimal information sets in the practical finite setting. To

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2019.2932391

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INFORMATION THEORY 8

the best of our knowledge this is the fist analytical result into
this direction.

It is an open questions whether results, similar to those
obtained in this paper, are true for other carrier sets and other
ONSs. In particular a theory for arbitrary carrier sets, i.e.,
for arbitrary I ⊂ Z, would be useful. Our result, i.e., the
restriction to I = N0 is a first step into this direction. We
hope that our results and proof techniques can also serve as a
starting point for further research.

APPENDIX A
BASICS ON HARDY SPACES

In this section we introduce the necessary notions and
results from complex analysis. We roughly follow the pre-
sentation and notation in [47]. We introduce the Hardy spaces
next. For 1 ≤ p < ∞, Hp(D) is the space of all functions
f analytic in the open unit disk D = {z ∈ C : |z| < 1} for
which

‖f‖Hp(D) = sup
0≤r<1

(
1

2π

∫ π

−π
|f(r eiθ)|p dθ

) 1
p

<∞.

H∞(D) is the space of all bounded analytic functions on D,
equipped with the norm ‖f‖H∞(D) = sup|z|<1|f(z)|. For f ∈
Hp(D), 1 ≤ p ≤ ∞, the radial limit limr→1 f(r eiθ) exists
for almost all θ ∈ T, and we denote it by f(eiθ). We have
f(ei · ) ∈ Lp(T), as well as ‖f(ei · )‖Lp = ‖f‖Hp(D). Further,
it holds for all f ∈ Hp(D), 1 ≤ p ≤ ∞, that

f(z) =
1

2π

∫ π

−π

f(eiθ) eiθ

eiθ −z
dθ, |z| < 1. (13)

Hence, we can identify f ∈ Hp(D), 1 ≤ p ≤ ∞, with its
boundary function f(eiθ). By Hp(T) we denote the set of
boundary functions f(ei · ) of functions f ∈ Hp(D).

For 1 ≤ p ≤ ∞, Lp(T) functions are uniquely determined
by their Fourier coefficients

ck(f) =
1

2π

∫ π

−π
f(θ) e−ikθ dθ, k ∈ Z, (14)

and, for 1 < p <∞, we have

f(θ)
Lp

=
∞∑

k=−∞

ck(f) eikθ, θ ∈ [−π, π].

For 1 ≤ p ≤ ∞ we have the following characterization of
Hardy spaces

Hp(T) =

{
f ∈ Lp(T) :

∫ π

−π
f(θ) e−ikθ dθ = 0, k < 0

}
.

Thus, Hp(T), 1 ≤ p ≤ ∞, is a closed subspace of Lp(T). We
use the abbreviations Hp := Hp(T) and Lp := Lp(T). Let

H1
0 =

{
f ∈ H1 :

1

2π

∫ π

−π
f(θ) dθ = 0

}
be the set of all functions in H1 whose zeroth Fourier
coefficient is zero. H1

0 is a closed subspace of H1, and
therefore H1

0 is a closed subspace of L1.

Further, we need the quotient space L1/H1
0 , consisting of

the set of all equivalence classes

[f ] = f +H1
0 = {f + h}h∈H1

0
, f ∈ L1.

Note that [f ] is the set of all L1-functions q with ck(q) =
ck(f) for all k ≤ 0. Since L1 is complete and H1

0 is a closed
subspace of L1, it follows that L1/H1

0 is a Banach space,
when equipped with the norm

‖[f ]‖L1/H1
0

= inf
h∈H1

0

‖f + h‖L1 .

A function f : ∂D → C, where ∂D = {z ∈ C : |z| = 1}
denotes unit circle, is said to belong to the space of functions
of bounded mean oscillation BMO if

‖f‖BMO = sup
I

1

|I|

∫
I

|f(z)−mI(f)| dz <∞,

where I denotes an arc on ∂D, |I| is the length of I , and
mI(f) = 1/|I|

∫
I
f(z) dz.

By

(P+f)(z) =
∞∑
k=0

ck(f(ei · ))zk, |z| < 1,

and

(P−f)(z) =
−1∑

k=−∞

ck(f(ei · ))zk, |z| > 1,

we denote the Riesz projections. The boundary values
(P+f)(eiθ) exist almost everywhere and uniquely determine
P+f . For 1 < p < ∞, P+ : Lp(∂D) → Hp(D) is a bounded
linear operator. For p = 1 and p = ∞ this is no longer the
case, as we have already observed in Section V. For p = 1
we have the weak-type estimate [47, p. 106]: There exists a
constant C2 > 0 such that

µ({θ ∈ [−π, π] : |(P+f)(eiθ) > λ|}) ≤ C2

λ
‖f‖L1 . (15)

For p =∞ we have

‖P+f‖BMO ≤ C3‖f‖L∞ .

For 1 ≤ p ≤ ∞, P+f has a simple Cauchy integral
representation

(P+f)(z) =
1

2π

∫ π

−π

f(eiθ) eiθ

eiθ −z
dθ, |z| < 1.

For p = 2 the projection P+ is particularly simple, however,
we need to understand the case p = 1. Note that P+ does
not map L1(∂D) into H1(D). The Riesz projection P− has
properties that are analogous to those of P+. In particular,
there exists a constant C4 > 0 such that

µ({θ ∈ [−π, π] : |(P−f)(eiθ) > λ|}) ≤ C4

λ
‖f‖L1 . (16)

Since H1
0 is a closed subspace of L1, we can define the

metric projection according to Kahane [48]. For f ∈ L1, let

d(f,H1
0 ) = inf

h∈H1
0

‖f + h‖L1

denote the smallest distance between f and H1
0 . The mapping

P (f) = {h ∈ H1
0 : ‖f − h‖L1 = d(f,H1

0 )}
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is called metric projection of f on H1
0 . In our case, it can

be shown that, for each f ∈ L1, P (f) contains exactly one
element [48]. Further, P is a continuous operator. However,
P is a non-linear operator in general.

The previous discussion shows that for each f ∈ L1 there
exists exactly one h∗ ∈ H1

0 , such that

‖[f ]‖L1/H1
0

= ‖f + h∗‖L∞ .

h∗ = P (f) is the metric projection of f on H1
0 , and h∗

depends continuously on f . Clearly, we have f + h∗ ∈ [f ].
In the remainder of this section we will discuss the con-

nections between the Riesz projection P+ and the Hilbert
transform, which is of crucial importance in the information
technology field. For 1 < p < ∞, the Hilbert transform is
defined by

(Hf)(eiτ ) = V.P.

∫ ∞
−∞

f(eiθ)

tan
(
τ−θ
2

) dθ,

where the singular integral, i.e., the Cauchy principal value ex-
ists almost everywhere. For 1 < p <∞, the Hilbert transform
H : Lp(∂D)→ Lp(∂D) is a bounded linear operator.

For all f ∈ Lp(∂D), the expression (13) defines a bounded
linear operator Q : Lp(∂D)→ Hp(D) with

Qf = c0(f) +
1

2
(Id− iH)f.

We further have

(P+f)(z) =
∞∑
n=0

cn(f)zn, |z| < 1.

Using
(H eik · )(θ) = −i sgn(k) eikθ,

where sgn denotes the signum function with sgn(0) = 0, we
have for

gk(eiθ) = eikθ

that

(Qgk)(z) = c0(gk) +
1

2

(
1− i2 sgn(k)

)
gk(z).

It follows that (Qgk)(z) = c0(gk) if k = 0. For k > 0 we
have c0(gk) = 0 and 1

2

(
1− i2 sgn(k)

)
= 1, which shows

that (Qgk)(z) = gk(z). For k < −1 we have (Qgk)(z) = 0,
|z| < 1, because 1 + sgn(k) = 0. Thus, we have

Qgk = P+gk

for all k ∈ Z. Since the set of trigonometric polynomials is
dense in Lp(∂D), 1 ≤ p <∞, we have

Qf = P+f (17)

for all f ∈ Lp(∂D), 1 ≤ p <∞. Moreover, since L∞(∂D) ⊂
Lp(∂D), p < ∞, the equality (17) also holds for all f ∈
L∞(∂D).

Furthermore, the Hilbert transform is no bounded operator
from L1(∂D) to L1(∂D), L∞(∂D) to L∞(∂D), and C(∂D)
to C(∂D). This is the problem we encountered and that was
visualized in Figures 1 and 2.

APPENDIX B
A NAIVE APPROACH

Before we prove Theorem 2, we want to discuss a naive
approach. Although this naive approach does not work, it will
provide us valuable insights. In particular, we will see the
problems that appear if the path that was used in [25] is taken.

We only discuss the “⇐” direction of the proof here, be-
cause the “⇒” direction is easy, as we will see in Appendix D.
Let

F
1
(K) =

{
f ∈ L1 : ck(f) = 0 for k ∈ Z \ (−K)

}
, (18)

where

ck(f) =
1

2π

∫ π

−π
f(θ) e−ikθ dθ.

That is, f ∈ F
1
(K) is concentrated on −K. Clearly, we have

(8) for all f ∈ F1(K) if and only if we have (8) for all f ∈
F
1
(K). Hence, in order to prove the “⇐” direction, we can

assume that (8) holds for all f ∈ F
1
(K).

For a = {ak}k∈K ∈ `2(K) and f ∈ F
1
(K) we define the

linear functional

Φa(f) =
∑
k∈K

c−k(f)ak.

Since

|Φa(f)| ≤

(∑
k∈K

|c−k(f)|2
) 1

2
(∑
k∈K

|ak|2
) 1

2

= ‖f‖L2‖a‖`2(K)
≤ C1‖f‖L1‖a‖`2(K),

we see that the linear functional Φa : F
1
(K) → C is well

defined and bounded. F
1
(K) is a closed subspace of L1.

Hence, according to the Hahn–Banach theorem, we can extend
the functional Φa to a functional ΦEx

a on all of L1 such that
the norm is retained. That is, we have

|ΦEx
a (f)| ≤ C1‖f‖L1‖a‖`2(K)

for all f ∈ L1. The Riesz representation theorem implies that
there exists a function g ∈ L∞ with ‖g‖L∞ ≤ C1‖a‖`2(K),
such that

ΦEx
a (f) =

1

2π

∫ π

−π
f(θ)g(θ) dθ

for all f ∈ L1. For k ∈ K and fk(θ) = e−ikθ, θ ∈ [−π, π],
we have fk ∈ F

1
(K), and it holds that

ΦEx
a (fk) = Φa(fk) =

∑
l∈K

al
1

2π

∫ π

−π
fk(θ) eilθ dθ = ak

for all k ∈ K. Thus, ck(g) = ak and g ∈ L∞, i.e., g solves
the CF problem. However, the spectrum of g is not necessarily
concentrated on N0, but rather on Z, i.e., with this approach
we use K{

Z = Z \ K as compensation set in general.
A first idea that might come into one’s mind is to use the

signal

g+(eiθ)
L2

=
∞∑
k=0

ck(g) eikθ .
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However, g+ is only in BMO and not in H∞(D) in general.
Although we control the BMO-norm according to ‖g+‖BMO ≤
C1‖a‖`2(K), we have no control of the L∞-norm because the
BMO norm controls the Lp-norms only for p < ∞ and not
for p =∞. Thus, this approach does not work.

In order to prove Theorem 2, we need to go a different path
which requires the introduction of suitable function spaces.
We use the quotient space L1/H1

0 . This is expedient because
the dual space of L1/H1

0 , which we denote by (L1/H1
0 )∗ is

H∞. However, compared to the scenario where we use the
full compensation set K{

Z, we have to pay a price in the form
of a larger extension constant when using only the restricted
compensation set K{

N0
.

APPENDIX C
TECHNICAL RESULTS

For h ∈ H1
0 and g ∈ H∞ we have

1

2π

∫ π

−π
h(θ)g(θ) dθ = 0.

Hence, it follows that

1

2π

∫ π

−π
f(θ)g(θ) dθ =

1

2π

∫ π

−π
(f(θ) + h(θ))g(θ) dθ

for all f ∈ L1, g ∈ H∞, and h ∈ H1
0 . This equality can

be used to show that the dual space of (L1/H1
0 ) is given by

(L1/H1
0 )∗ = H∞ [47, p. 198].

Thus, for any continuous linear functional Φ on L1/H1
0

there exists a function g ∈ H∞ such that

Φ([f ]) =
1

2π

∫ π

−π
f(θ)g(eiθ) dθ

for all [f ] ∈ L1/H1
0 . Further, we have

‖Φ‖∞ = sup
[f ]∈L1/H1

0

‖[f ]‖
L1/H1

0
≤1

|Φ([f ])| = ‖g‖H∞ .

In the proof we need to reason with the space L1/H1
0 , because

for H1 we have (H1)∗ = BMOA, where BMOA denotes the
space of functions in BMO that are analytic inside the unit
circle.

We need some technical results about P− that we will derive
next. Let

Eλ(f) = {θ ∈ [−π, π] : |f(θ)| > λ}.

For 1 ≤ p <∞ it is shown in [49, p. 7] that

‖f‖pLp =

∫ ∞
0

pλp−1µ(Eλ(f)) dλ. (19)

However, we need this relation for p = 1/2, as stated in the
following lemma.

Lemma 1. We have

‖f‖1/2
L1/2 =

1

2

∫ ∞
0

1√
λ
µ(Eλ(f)) dλ. (20)

Proof. For p = 1, we obtain from (19) that

‖g‖L1 =

∫ ∞
0

µ(Eλ(g)) dλ.

Let g(θ) = |f(θ)|1/2. Then we have

Eλ(g) = Eλ(|f |1/2)

= {θ ∈ [−π, π] : |f(t)|1/2 > λ}
= {θ ∈ [−π, π] : |f(t)| > λ2}
= Eλ2(f)

and

‖f‖1/2
L1/2 = ‖g‖L1

=

∫ ∞
0

µ(Eλ(g)) dλ

=

∫ ∞
0

µ(Eλ2(f)) dλ.

Let λ1 = λ2. Then it follows that∫ ∞
0

µ(Eλ2(f)) dλ =
1

2

∫ ∞
0

1√
λ1
µ(Eλ1

(f)) dλ1,

which completes the proof.

We use Lemma 1 and apply it to the function P−f to obtain
the next lemma.

Lemma 2. There exists a constant C5 such that for all f ∈ L1

we have
‖P−f‖L1/2 ≤ C5‖f‖L1 .

Proof. Using (16), we see that

µ({θ ∈ [−π, π] : |(P−f)(eiθ) > λ|}) ≤ C4

λ
‖f‖L1 . (21)

Further, according to Lemma 1, we have

‖P−f‖1/2L1/2 =
1

2

∫ ∞
0

1√
λ
µ(Eλ(P−f)) dλ

=
1

2

∫ ‖f‖L1

0

1√
λ
µ(Eλ(P−f)) dλ

+
1

2

∫ ∞
‖f‖L1

1√
λ
µ(Eλ(P−f)) dλ.

We will analyze both integrals next. Since

µ(Eλ(P−f)) ≤ 2π,

we obtain for the first integral

1

2

∫ ‖f‖L1

0

1√
λ
µ(Eλ(P−f)) dλ ≤ 2π

2

∫ ‖f‖L1

0

1√
λ

dλ

= 2π (‖f‖L1)
1
2 .

For the second integral we obtain, using (21), that

1

2

∫ ∞
‖f‖L1

1√
λ
µ(Eλ(P−f)) dλ ≤ C4‖f‖L1

2

∫ ∞
‖f‖L1

1

λ
√
λ

dλ

= C4 (‖f‖L1)
1
2 .

Consequently, we have

‖P−f‖L1/2 ≤ (2π + C4)2‖f‖L1 .

Let
c1(F

1
(K)) = inf

f∈F1
(K)

‖f‖L1=1

‖[f ]‖L1/H1
0
. (22)
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Clearly, we always have c1(F
1
(K)) ≥ 0. Moreover, the

following lemma shows that c1(F
1
(K)) = 0 cannot occur in

the case that is relevant to us.

Lemma 3. Let K ⊂ N0 and assume that there exits a constant
C1 such that

‖f‖L2 ≤ C1‖f‖L1 (23)

for all f ∈ F
1
(K). Then we have c1(F

1
(K)) > 0.

Proof. We prove the lemma by contradiction, and assume that
c1(F

1
(K)) = 0. Then there exists a sequence {fn}n∈N ⊂

F
1
(K) with ‖fn‖L1 = 1 such that

lim
n→∞

‖[fn]‖L1/H1
0

= 0.

For every n ∈ N there exists exactly one hn ∈ H1
0 such that

‖[fn]‖L1/H1
0

= ‖fn + hn‖L1 .

Since hn ∈ H1
0 , we have P−(hn) = 0, and it follows that

P−(fn + hn) = fn. Hence, Lemma 2 implies that

‖fn‖L1/2 ≤ C5‖fn + hn‖L1 = C5‖[fn]‖L1/H1
0
,

and we obtain
lim
n→∞

‖fn‖L1/2 = 0. (24)

According to the definition of the sequence {fn}n∈N we have
‖fn‖L1 = 1, and due to (23) we obtain ‖fn‖L2 ≤ C1. Hence,
for all n ∈ N, we have

1 =
1

2π

∫ π

−π
|fn(θ)| dθ

=
1

2π

∫ π

−π
|fn(θ)| 14 |fn(θ)|1− 1

4 dθ

≤
(

1

2π

∫ π

−π
|fn(θ)| 12 dθ

) 1
2
(

1

2π

∫ π

−π
|fn(θ)| 32 dθ

) 1
2

≤
(

1

2π

∫ π

−π
|fn(θ)| 12 dθ

) 1
2
(

1

2π

∫ π

−π
|fn(θ)|2 dθ

) 1
2

3
4

≤ ‖fn‖
1
4

L1/2C
3
4
1 ,

where we used Hölder’s inequality in the second to last line,
and consequently

‖fn‖L1/2 ≥ C−31 ,

which is a contradiction to (24). Hence, our assumption
c1(F

1
(K)) = 0 was wrong, and it follows c1(F

1
(K)) > 0.

APPENDIX D
PROOF OF THE MAIN RESULT

We split the proof of Theorem 2 into two parts, the “⇒”
and the “⇐” direction. The statement of the “⇐” direction is
rephrased in the following theorem.

Theorem 8. Let K ⊂ N0 be such that there exists a constant
C1 such that

‖f‖L2 ≤ C1‖f‖L1 (25)

for all f ∈ F
1
(K). Then, for each a ∈ `2(K), there exists a

g ∈ H∞ such that

‖g‖H∞ ≤
C1

c1(F
1
(K))

‖a‖`2(K)

and

ak =
1

2π

∫ π

−π
g(θ) e−ikθ dθ, k ∈ K.

For the proof of Theorem 8 we need one further lemma.
Let F

1
(K) be the Banach space that was defined in (18), and

define the linear operator T by

T : F
1
(K)→ L1/H1

0 , f 7→ [f ] = {f + h}h∈H1
0
.

Since

‖Tf‖L1/H1
0

= inf
g∈H1

0

‖f + g‖L1 ≤ ‖f + 0‖L1 = ‖f‖L1 ,

we see that T is a bounded operator. Further, let

B1 = T [F
1
(K)]

be the image of F
1
(K) under T .

Lemma 4. Let K ⊂ N0 and assume that there exits a constant
C1 such that

‖f‖L2 ≤ C1‖f‖L1

for all f ∈ F
1
(K). Then B1 = T [F

1
(K)] is a closed subspace

of L1/H1
0 .

Proof. T is a bounded linear operator. Hence, B1 is a vector
space. It remains to show that B1 is complete. Let {[fn]}n∈N
be a Cauchy sequence in B1. Using B1 ⊂ L1/H1

0 , it follows
that {[fn]}n∈N is also a Cauchy sequence in L1/H1

0 . Since
L1/H1

0 is a Banach space, there exists an [f∗] ∈ L1/H1
0 such

that
lim
n→∞

‖[fn]− [f∗]‖L1/H1
0

= 0.

From the definition of c1 in (22) we see that ‖Tf‖L1/H1
0
≥

c1(F
1
(K)) for all f ∈ F

1
(K) with ‖f‖L1 = 1, and conse-

quently that

‖Tf‖L1/H1
0
≥ c1(F

1
(K))‖f‖L1

for all f ∈ F
1
(K). Since c1(F

1
(K)) > 0, according to

Lemma 3, we obtain

‖[f ]‖L1/H1
0

c1(F
1
(K))

=
‖Tf‖L1/H1

0

c1(F
1
(K))

≥ ‖f‖L1 (26)

for all f ∈ F
1
(K). Thus, we have

‖[fn]− [fm]‖L1/H1
0

c1(F
1
(K))

≥ ‖fn − fm‖L1 ,

which shows that {fn}n∈N is a Cauchy sequence in F
1
(K).

Hence, there exists a g∗ ∈ F
1
(K) such that

lim
n→∞

‖fn − g∗‖L1 = 0.
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We have

‖[fn]− [g∗]‖L1/H1
0

= ‖T (fn − g∗)‖L1/H1
0

≤ ‖fn − g∗‖L1 ,

and consequently

lim
n→∞

‖[fn]− [g∗]‖L1/H1
0

= 0.

It follows that [g∗] = [f∗], which shows that [f∗] ∈ B1. Thus,
B1 is complete.

Now we are in the position to prove Theorem 8.
Proof of Theorem 8: For a ∈ `2(K) and f ∈ B1 we

define the linear functional

Φa([f ]) =
∑
k∈K

c−k(f)ak.

Φa is well-defined, because [f ] = [g] implies g = f + h for
some h ∈ H1

0 , and we have

Φa([g]) = Φa([f + h])

=
∑
k∈K

ak
1

2π

∫ π

−π
(f(θ) + h(θ)) eikθ dθ

=
∑
k∈K

ak
1

2π

∫ π

−π
f(θ) eikθ dθ

=
∑
k∈K

c−k(f)ak

= Φa([f ]).

Let [f ] ∈ B1 = T [F
1
(K)] be arbitrary but fixed. We have,

using the assumption (25), that

|Φa([f ])| ≤

(∑
k∈K

|c−k(f)|2
) 1

2
(∑
k∈K

|ak|2
) 1

2

= ‖f‖L2‖a‖`2(K)
≤ C1‖f‖L1‖a‖`2(K). (27)

As shown in (26), we also have

‖[f ]‖L1/H1
0

c1(F
1
(K))

≥ ‖f‖L1 .

Combining (26) and (27), it follows that

|Φa([f ])| ≤ C1

c1(F
1
(K))

‖[f ]‖L1/H1
0
‖a‖`2(K).

Thus, the functional Φa : B1 → C is a continuous linear
functional on B1, and its norm satisfies

‖Φa‖B1→C ≤
C1

c1(F
1
(K))

‖a‖`2(K).

From Lemma 4 we know that B1 is a closed subspace of
L1/H1

0 . According to the Hahn–Banach theorem [50, p. 104,
Theorem 5.16] we can extend the functional Φa to a continu-
ous linear functional ΦEx

a on whole of L1/H1
0 , while keeping

the norm of Φa. Since the dual space of L1/H1
0 is H∞, it

follows that there exists a gEx ∈ H∞, such that

ΦEx
a ([f ]) =

1

2π

∫ π

−π
f(θ)gEx(θ) dθ (28)

for all [f ] ∈ L1/H1
0 . As above, ΦEx

a is well defined, because

1

2π

∫ π

−π
h(θ)gEx(θ) dθ = 0

for all h ∈ H1
0 . We have ‖ΦEx

a ‖ = ‖gEx‖H∞ . For k ∈ K and

fk(θ) = e−ikθ, θ ∈ [−π, π],

we have fk ∈ F
1
(K) and [fk] ∈ B1. It follows that

ΦEx
a ([fk]) = Φa([fk]) =

∑
l∈K

al
1

2π

∫ π

−π
fk(θ) eilθ dθ = ak

for all k ∈ K. From (28) we see that

ΦEx
a ([fk]) =

1

2π

∫ π

−π
e−ikθ gEx(θ) dθ = ck(gEx).

Thus, gEx satisfies ck(gEx) = ak for all k ∈ K, ck(gEx) = 0 for
all k < 0, and ‖gEx‖H∞ = ‖ΦEx

a ‖ = ‖Φa‖ ≤ C1/c1(F
1
(K)).

That is, gEx solves the OFDM CF problem with restricted
carrier set with extension constant C1/c1(F

1
(K)).

We have seen that the condition (25) is sufficient for the
strong solvability of the CF problem with restricted carrier set.
The necessity of the condition (25) for the strong solvability
of the CF problem with restricted carrier set is easy to see and
stated in the next theorem.

Theorem 9. Let K ⊂ N0. If the OFDM CF problem with
restricted carrier set (I = N0) is strongly solvable then there
exists a constant C1 such that (25) holds for all f ∈ F

1
(K).

Proof: Let K ⊂ N0. If the CF problem is strongly solvable
when using only the restricted compensation set, K{

N0
then it

is also strongly solvable when using the full compensation
set K{

Z. Hence, Theorem 1 implies that there exists a finite
constant C1 such that (25) holds for all f ∈ F

1
(K).

Theorems 8 and 9 together imply Theorem 2.
For the CF problem with full carrier set (I = Z), we know

that the optimal, i.e. smallest extension constant CZ
Ex is the

smallest constant for which (25) holds for all f ∈ F
1
(K).

As discussed above, for the optimal extension constant in the
CF problem with restricted carrier set (I = N0) we only
have the upper bound C1/c1(F

1
(K)). We conjecture that the

optimal extension constant for the CF problem with restricted
carrier set is in general much larger than the optimal extension
constant for the CF problem with full carrier set.

APPENDIX E
PROOF OF THEOREM 6

Proof of Theorem 6. The proof is almost identical to the proof
of Theorem 1 in [46]. We only discuss the differences here.
Let

H∞K =

{
f ∈ H∞ :

1

2π

∫ π

−π
f(θ) e−ikθ dθ = 0, k ∈ K

}
.

Then H∞K is a closed subspace of H∞. The rest of the proof
follows along the lines of the proof of Theorem 1 in [46],
when the quotient space QK = H∞/H∞K is considered.
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APPENDIX F
PROOF OF THEOREM 7

Proof of Theorem 7. Let

ZM =

{
a ∈ `2(K) : ∃f ∈ H∞, ‖f‖H∞ ≤M

with
1

2π

∫ π

−π
f(θ) e−ikθ dθ = ak, k ∈ K

}
.

We have
D{

N0
= `2(K) \ DN0

=
⋃
M∈N

ZM .

Assume that the CF problem with restricted carrier set is not
weakly solvable. Then there exists an a ∈ `2(K) such that
BN0

(a) = ∅. We will show that

D{
N0

= {a ∈ `2(K) : BN0(a) 6= ∅}

is a set of first category. According to the definition of a
residual set, this implies that DN0

is a residual set.
We prove that, for all M ∈ N0, the set ZM is nowhere

dense in `2(K). Then it follows that D{
N0

, as the countable
union of nowhere dense sets, is a set of first category.

We do a proof by contradiction: We assume that there exists
an M0 ∈ N such that ZM0 is not nowhere dense, and show
that this assumption leads to a contradiction. According to the
assumption there exist an â ∈ `2(K) and a δ > 0 such that

ZM0
∩Bδ(â)

is dense in Bδ(â), where

Bδ(â) = {a ∈ `2(K) : ‖a− â‖`2(K) < δ}

denotes the open ball at â with radius δ.
Let a ∈ Bδ(â) be arbitrary. Since ZM0

∩Bδ(â) is dense in
Bδ(â), there exists a sequence {a(N)}N∈N ⊂ ZM0

∩ Bδ(â)
such that

lim
N→∞

‖a− a(N)‖`2(K) = 0.

Further, for every N ∈ N, there exists an fN ∈ H∞(D) with
‖fN‖H∞ ≤M0 such that

1

2π

∫ π

−π
fN (eiθ) e−ikθ dθ = a

(N)
k , k ∈ K.

According to Montel’s theorem [51, p. 195] there exists a
subsequence {Nn}n∈N and an f∗ that is analytical in D, such
that

lim
n→∞

fNn(z) = f∗(z), (29)

where the convergence is uniform on compact subsets of D.
Thus, for all z ∈ D we have

|f∗(z)| = lim
n→∞

|fNn
(z)| ≤M0,

which implies that f∗ ∈ H∞(D). We have

fNn
(z) =

∞∑
l=0

cl(fNn
)zl, z ∈ D,

where

cl(fNn) =
1

2π

∫ π

−π
fNn(eiθ) e−ilθ dθ

=
1

2π

∫ π

−π
fNn

(ρ eiθ) e−ilθ dθρ−l, l, n ∈ N,

for 0 < ρ ≤ 1. The same holds for f∗. Using (29), it follows
that

lim
n→∞

cl(fNn
) = cl(f∗).

In particular, we have for k ∈ K that

ck(f∗) = lim
n→∞

a
(Nn)
k = ak.

Hence, we see that a ∈ ZM0
. Since a ∈ Bδ(â) was arbitrary, it

follows that Bδ(â) ⊂ ZM0 , which also implies that â ∈ ZM0 .
According to the assumption of the theorem, the CF is

not weakly solvable. Hence, there exists an ã ∈ `2(K) with
BN0

(ã) = ∅. We set

α := â+
δ

2‖ã‖`2(K)
ã ∈ Bδ(â) ⊂ ZM0 .

Thus, there must exist an f1 ∈ H∞, ‖f1‖H∞ ≤M0 such that

1

2π

∫ π

−π
f1(θ) e−ikθ dθ = αk, k ∈ K.

Since â ∈ ZM0 , there exists an f2 ∈ H∞, ‖f2‖H∞ ≤ M0

such that
1

2π

∫ π

−π
f2(θ) e−ikθ dθ = âk, k ∈ K.

For

f3 :=
2‖ã‖`2(K)

δ
(f1 − f2)

we have

‖f3‖H∞ =
2‖ã‖`2(K)

δ
‖f1 − f2‖H∞

≤
2‖ã‖`2(K)

δ
(‖f1‖H∞ + ‖f2‖H∞)

≤
4‖ã‖`2(K)M0

δ
,

which shows that f3 ∈ H∞. For k ∈ K, we have

1

2π

∫ π

−π
f3(θ) e−ikθ dθ =

2

δ
(αk − âk) = ãk, k ∈ K.

Therefore, we have ã ∈ ZM̃ , where M̃ is the smallest
natural number such that M̃ ≥ 4‖ã‖`2(K)M0/δ. It follows
that BN0

(ã) 6= ∅, which is a contradiction.
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